3,631 research outputs found

    Hardware-accelerated interactive data visualization for neuroscience in Python.

    Get PDF
    Large datasets are becoming more and more common in science, particularly in neuroscience where experimental techniques are rapidly evolving. Obtaining interpretable results from raw data can sometimes be done automatically; however, there are numerous situations where there is a need, at all processing stages, to visualize the data in an interactive way. This enables the scientist to gain intuition, discover unexpected patterns, and find guidance about subsequent analysis steps. Existing visualization tools mostly focus on static publication-quality figures and do not support interactive visualization of large datasets. While working on Python software for visualization of neurophysiological data, we developed techniques to leverage the computational power of modern graphics cards for high-performance interactive data visualization. We were able to achieve very high performance despite the interpreted and dynamic nature of Python, by using state-of-the-art, fast libraries such as NumPy, PyOpenGL, and PyTables. We present applications of these methods to visualization of neurophysiological data. We believe our tools will be useful in a broad range of domains, in neuroscience and beyond, where there is an increasing need for scalable and fast interactive visualization

    Synaptic scaling in sleep

    Get PDF
    Sleep appears to be a universal phenomenon in the animal kingdom (1) and lack of sleep leads to severe cognitive disruption (2). Yet, the biological function of sleep is unknown. On pages 507 and 511 of this issue, de Vivo et al. (3) and Diering et al. (4), respectively, provide a peek into the nightlife of synapses, the neural connections in the nervous system. The studies reveal substantial alterations in the structure and molecular machinery of synapses during sleep

    Hallucinations and nonsensory correlates of neural activity

    Get PDF

    Challenges and opportunities for large-scale electrophysiology with Neuropixels probes

    Get PDF
    Electrophysiological methods are the gold standard in neuroscience because they reveal the activity of individual neurons at high temporal resolution and in arbitrary brain locations. Microelectrode arrays based on complementary metal-oxide semiconductor (CMOS) technology, such as Neuropixels probes, look set to transform these methods. Neuropixels probes provide ∼1000 recording sites on an extremely narrow shank, with on-board amplification, digitization, and multiplexing. They deliver low-noise recordings from hundreds of neurons, providing a step change in the type of data available to neuroscientists. Here we discuss the opportunities afforded by these probes for large-scale electrophysiology, the challenges associated with data processing and anatomical localization, and avenues for further improvements of the technology

    Sensory coding and the causal impact of mouse cortex in a visual decision.

    Get PDF
    Correlates of sensory stimuli and motor actions are found in multiple cortical areas, but such correlates do not indicate whether these areas are causally relevant to task performance. We trained mice to discriminate visual contrast and report their decision by steering a wheel. Widefield calcium imaging and Neuropixels recordings in cortex revealed stimulus-related activity in visual (VIS) and frontal (MOs) areas, and widespread movement-related activity across the whole dorsal cortex. Optogenetic inactivation biased choices only when targeted at VIS and MOs,proportionally to each site's encoding of the visual stimulus, and at times corresponding to peak stimulus decoding. A neurometric model based on summing and subtracting activity in VIS and MOs successfully described behavioral performance and predicted the effect of optogenetic inactivation. Thus, sensory signals localized in visual and frontal cortex play a causal role in task performance, while widespread dorsal cortical signals correlating with movement reflect processes that do not play a causal role

    Cortical State Fluctuations during Sensory Decision Making

    Get PDF
    In many behavioral tasks, cortex enters a desynchronized state where low-frequency fluctuations in population activity are suppressed. The precise behavioral correlates of desynchronization and its global organization are unclear. One hypothesis holds that desynchronization enhances stimulus coding in the relevant sensory cortex. Another hypothesis holds that desynchronization reflects global arousal, such as task engagement. Here, we trained mice on tasks where task engagement could be distinguished from sensory accuracy. Using widefield calcium imaging, we found that performance-related desynchronization was global and correlated better with engagement than with accuracy. Consistent with this link between desynchronization and engagement, rewards had a long-lasting desynchronizing effect. To determine whether engagement-related state changes depended on the relevant sensory modality, we trained mice on visual and auditory tasks and found that in both cases desynchronization was global, including regions such as somatomotor cortex. We conclude that variations in low-frequency fluctuations are predominately global and related to task engagement

    Hippocampal CA1 Somatostatin Interneurons Originate in the Embryonic MGE/POA

    Get PDF
    Oriens lacunosum-moleculare (O-LM) interneurons constitute 40% of hippocampal interneurons expressing Somatostatin (SST). Recent evidence has indicated a dual origin for these cells in the medial and caudal ganglionic eminences (MGE and CGE), with expression of Htr3a as a distinguishing factor. This is strikingly different from cortical SST interneurons that have a single origin within the MGE/preoptic area (POA). We reassessed the origin of hippocampal SST interneurons using a range of genetic lineage-tracing mice combined with single-cell transcriptomic analysis. We find a common origin for all hippocampal SST interneurons in NKX2-1-expressing progenitors of the telencephalic neuroepithelium and an MGE/POA-like transcriptomic signature for all SST clusters. This suggests that functional heterogeneity within the SST CA1 population cannot be attributed to a differential MGE/CGE genetic origin

    State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex.

    Get PDF
    Cortical responses can vary greatly between repeated presentations of an identical stimulus. Here we report that both trial-to-trial variability and faithfulness of auditory cortical stimulus representations depend critically on brain state. A frozen amplitude-modulated white noise stimulus was repeatedly presented while recording neuronal populations and local field potentials (LFPs) in auditory cortex of urethane-anesthetized rats. An information-theoretic measure was used to predict neuronal spiking activity from either the stimulus envelope or simultaneously recorded LFP. Evoked LFPs and spiking more faithfully followed high-frequency temporal modulations when the cortex was in a desynchronized state. In the synchronized state, neural activity was poorly predictable from the stimulus envelope, but the spiking of individual neurons could still be predicted from the ongoing LFP. Our results suggest that although auditory cortical activity remains coordinated as a population in the synchronized state, the ability of continuous auditory stimuli to control this activity is greatly diminished

    Dopamine axons in dorsal striatum encode contralateral visual stimuli and choices.

    Get PDF
    The striatum plays critical roles in visually-guided decision making and receives dense axonal projections from midbrain dopamine neurons. However, the roles of striatal dopamine in visual decision making are poorly understood. We trained male and female mice to perform a visual decision task with asymmetric reward payoff, and we recorded the activity of dopamine axons innervating striatum. Dopamine axons in the dorsomedial striatum (DMS) responded to contralateral visual stimuli and contralateral rewarded actions. Neural responses to contralateral stimuli could not be explained by orienting behavior such as eye movements. Moreover, these contralateral stimulus responses persisted in sessions where the animals were instructed to not move to obtain reward, further indicating that these signals are stimulus-related. Lastly, we show that DMS dopamine signals were qualitatively different from dopamine signals in the ventral striatum, which responded to both ipsi- and contralateral stimuli, conforming to canonical prediction error signaling under sensory uncertainty. Thus, during visual decisions, DMS dopamine encodes visual stimuli and rewarded actions in a lateralized fashion, and could facilitate associations between specific visual stimuli and actions

    Vision and Locomotion Shape the Interactions between Neuron Types in Mouse Visual Cortex

    Get PDF
    Cortical computation arises from the interaction of multiple neuronal types, including pyramidal (Pyr) cells and interneurons expressing Sst, Vip, or Pvalb. To study the circuit underlying such interactions, we imaged these four types of cells in mouse primary visual cortex (V1). Our recordings in darkness were consistent with a "disinhibitory" model in which locomotion activates Vip cells, thus inhibiting Sst cells and disinhibiting Pyr cells. However, the disinhibitory model failed when visual stimuli were present: locomotion increased Sst cell responses to large stimuli and Vip cell responses to small stimuli. A recurrent network model successfully predicted each cell type's activity from the measured activity of other types. Capturing the effects of locomotion, however, required allowing it to increase feedforward synaptic weights and modulate recurrent weights. This network model summarizes interneuron interactions and suggests that locomotion may alter cortical computation by changing effective synaptic connectivity
    corecore